Example: Solve $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$

Can we get it in $F(\frac{y}{x})$ style?

Start with: $\frac{x^2 + y^2}{xy}$

Separate terms: $\frac{x^2}{xy} + \frac{y^2}{xy}$

Simplify: $\frac{x}{y} + \frac{y}{x}$

Reciprocal of first term: $(\frac{y}{x})^{-1} + \frac{y}{x}$

Yes, we have a function of $\frac{y}{x}$.

So let's go:

Start with: $\frac{dy}{dx} = (\frac{y}{x})^{-1} + \frac{y}{x}$

$$y = vx$$
 and $\frac{dy}{dx} = v + x \frac{dv}{dx}$: $v + x \frac{dv}{dx} = v^{-1} + v$

Subtract v from both sides: $x \frac{dv}{dx} = v^{-1}$

Now use Separation of Variables:

Separate the variables: $v dv = \frac{1}{x} dx$

Put the integral sign in front: $\int v \, dv = \int \frac{1}{x} \, dx$

Integrate: $\frac{v^2}{2} = \ln(x) + C$

Then we make $C = \ln(k)$: $\frac{v^2}{2} = \ln(x) + \ln(k)$

Combine In: $\frac{v^2}{2} = \ln(kx)$

Simplify: $V = \pm \sqrt{(2 \ln(kx))}$

Now substitute back $v = \frac{y}{x}$

2021.06.11 17:00

Substitute
$$v = \frac{y}{x}$$
: $\frac{y}{x} = \pm \sqrt{(2 \ln(kx))}$

Simplify: $y = \pm x \sqrt{(2 \ln(kx))}$

And we have the solution.

The positive portion looks like this:

